Learning to Rank
[[Point Wise]]
-
全局相关性
-
没有对先后顺序的优劣做惩罚
-
将 Ranking 算法转化成回归、分类或序列回归
[[Pair Wise]] 二分类
-
多个 pair 排序问题,比较不同文章的先后顺序
-
目标
- 减少误分类 doc pair 的比例
-
问题
-
考虑出现的相对位置,但是没有考虑文档在搜索列表中的位置。
- 排在搜索结果前面的文章更为重要,如果排在靠前的文章出现判断错误,代价明显高于排在后面的文档
-
不同查询相关文档数量差异大
-
-
方法
-
RankNet
-
[[GBRank]]
-
-
关注逆序部分
-
逆序 loss 为正,正序 loss 为零
-
-
-
[[List Wise]]
-
考虑整体序列,针对 Ranking 评价指标进行优化
-
方法
-
AdaRank
-
SoftRank
-
[[LambdaMART]]
-
LambdaRank
- 蓝色表示相关文档,右侧的图片中,虽然指标下降,但是从直觉上来说并不好。
-
指标
-
MAP(Mean Average Precision)
-
-
-
- 所有 query 的 ap 值取平均
-
例子
- 假设query_1有4个相关的document,分别被模型排在1,2,5,7位,那么query_1的AP就是(1/1+2/2+3/5+4/7) / 4;
-
query_2有5个相关的document,分别被模型排在2,3,6,29,58位那么query_2的MAP就是(1/2+2/3+3/6+4/29+5/58) / 5,但通常情况下,我们的 不会取到58,只会关注排名靠前的document,因此排在29与58的document可以视为没有被模型检索出来,假设取m
,则query_2的AP是(1/2+2/3+0+0+3/6+0+0)/5。
+ 对以上两个query取平均即可得出MAP。
- [[NDCG]]
Ref
-
Learning to Rank for Information Retrieval
-
FM模型在LTR类问题中的应用 [[杨镒铭]]
-
Learning to Rank